skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Higgins, Padraig"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Human-robot interaction is a critical area of research, providing support for collaborative tasks where a human instructs a robot to interact with and manipulate objects in an environment. However, an under-explored element of these collaborative manipulation tasks are small-scale building exercises, in which the human and robot are working together in close proximity with the same set of objects. Under these conditions, it is essential to ensure the human’s safety and mitigate comfort risks during the interaction. As there is danger in exposing humans to untested robots, a safe and controlled environment is required. Simulation and virtual reality (VR) for HRI have shown themselves to be suitable tools for creating space for human-robot experimentation that can be beneficial in these scenarios. However, the use of simulation and VR comes with the possibility of failures resulting from the sim-to-real gap, where the behavior of the simulated robot may not accurately reflect the experience of a human collaborator in a real-world setting. This gap can limit the generalizability of research findings and raise questions about the validity of using simulation and VR for HRI research. Our goal in this work is to demonstrate the effectiveness of sim-to-real approaches for contact-based human-robot interaction. 
    more » « less
  2. In this paper, we present a shared manipulation task performed both in virtual reality with a simulated robot and in the real world with a physical robot. A collaborative assembly task where the human and robot work together to construct as simple electrical circuit was chosen. While there are platforms available for conducting human robot interactions using virtual reality, there has not been significant work investigating how it can influence human perception of tasks that are typically done in person. We present an overview of the simulation environment used, describe the paired experiment being performed, and finally enumerate a set of design desiderata to be considered when conducting sim2real experiment involving humans in a virtual setting. 
    more » « less
  3. Modern robotics heavily relies on machine learning and has a growing need for training data. Advances and commercialization of virtual reality (VR) present an opportunity to use VR as a tool to gather such data for human-robot interactions. We present the Robot Interaction in VR simulator, which allows human participants to interact with simulated robots and environments in real-time. We are particularly interested in spoken interactions between the human and robot, which can be combined with the robot's sensory data for language grounding. To demonstrate the utility of the simulator, we describe a study which investigates whether a user's head pose can serve as a proxy for gaze in a VR object selection task. Participants were asked to describe a series of known objects, providing approximate labels for the focus of attention. We demonstrate that using a concept of gaze derived from head pose can be used to effectively narrow the set of objects that are the target of participants' attention and linguistic descriptions. 
    more » « less
  4. Grounded language acquisition is a major area of research combining aspects of natural language processing, computer vision, and signal processing, compounded by domain issues requiring sample efficiency and other deployment constraints. In this work, we present a multimodal dataset of RGB+depth objects with spoken as well as textual descriptions. We analyze the differences between the two types of descriptive language and our experiments demonstrate that the different modalities affect learning. This will enable researchers studying the intersection of robotics, NLP, and HCI to better investigate how the multiple modalities of image, depth, text, speech, and transcription interact, as well as how differences in the vernacular of these modalities impact results. 
    more » « less
  5. Grounded language acquisition is a major area of research combining aspects of natural language processing, computer vision, and signal processing, compounded by domain issues requiring sample efficiency and other deployment constraints. In this work, we present a multimodal dataset of RGB+depth objects with spoken as well as textual descriptions. We analyze the differences between the two types of descriptive language and our experiments demonstrate that the different modalities affect learning. This will enable researchers studying the intersection of robotics, NLP, and HCI to better investigate how the multiple modalities of image, depth, text, speech, and transcription interact, as well as how differences in the vernacular of these modalities impact results. 
    more » « less
  6. For robots deployed in human-centric spaces, natural language promises an intuitive, natural interface. However, obtaining appropriate training data for grounded language in a variety of settings is a significant barrier. In this work, we describe using human-robot interactions in virtual reality to train a robot, combining fully simulated sensing and actuation with human interaction. We present the architecture of our simulator and our grounded language learning approach, then describe our intended initial experiments. 
    more » « less